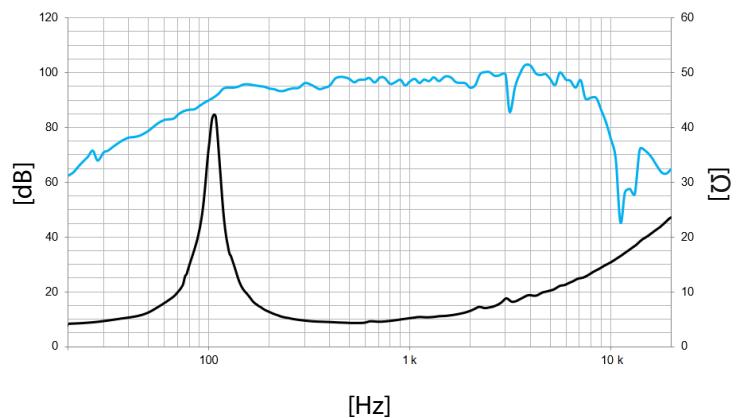


TECHNICAL SPECIFICATIONS

Nominal diameter	200 mm	8 in
Rated impedance	4 Ω	
Minimum impedance	4,3 Ω	
Power capacity ¹	150 W _{AES}	
Program power ²	300 W	
Sensitivity	96 dB 1W / 1m @ Z _N	
Frequency range	120 - 8.000 Hz	
Voice coil diameter	38,1 mm	1,5 in
BL factor		9,1 N/A
Moving mass		0,018 kg
Voice coil length		7,5 mm
Air gap height		6 mm

THIELE-SMALL PARAMETERS³


Resonant frequency, f _r	105 Hz
D.C. Voice coil resistance, R _e	3,3 Ω
Mechanical Quality Factor, Q _{ms}	5,4
Electrical Quality Factor, Q _{es}	0,46
Total Quality Factor, Q _{ts}	0,43
Equivalent Air Volume to C _{ms} , V _{as}	9 l
Mechanical Compliance, C _{ms}	130 μm / N
Mechanical Resistance, R _{ms}	2,1 kg / s
Efficiency, η ₀	2,1 %
Effective Surface Area, S _d	0,022 m ²
Maximum Displacement, X _{max} ⁴	2,5 mm
Displacement Volume, V _d	55 cm ³
Voice Coil Inductance, L _e	0,3 mH

MATERIALS

Voice coil winding	Copper
Voice coil former	Glass fiber
Spider	Polycotton
Magnet	Neodymium
Cone	Paper
Frame	Steel

MOUNTING INFORMATION

Overall diameter	210 mm	8,3 in
Bolt circle diameter	192 mm	7,6 in
Baffle cutout diameter:		
- Front mount	180 mm	7,1 in
Depth	75 mm	2,9 in
Net weight	1,3 kg	2,9 lb
Shipping weight	1,5 kg	3,3 lb

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

Notes:

This datasheet is done with the measurement of a laboratory prototype. Small differences may appear when the driver is transferred to the production line and manufactured in big quantities.

¹ The power capacity is determined according to AES2-1984 (r2003) standard.

² Program power is defined as power capacity + 3 dB.

³ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

⁴ The X_{max} is calculated as (L_{vc} · H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{ag} is the air gap height.